-- IMPORTANT --

Always reference the full model number and serial number when calling the factory.

WARNING / CAUTION

1. Tank is to be completely filled with water and all air is to be vented before energizing.

2. Due to the rigors of transportation, all connections should be checked for tightness before heater is placed in operation.

3. Safety relief valve must be installed in tapping provided.

4. The refractory material used in heating elements may absorb some moisture during transit, periods of storage, or when subjected to a humid environment. This moisture absorption results in a cold insulation resistance of less than one (1) megohms. If this heater has been subjected to the above condition, each heating element must be checked for insulation resistance before energizing. A low megohm condition can be corrected by removing the terminal hardware and baking the element in an oven at 300°F - 500°F for several hours or until the proper megohm reading is obtained.

5. KEEP AWAY FROM LIVE ELECTRICAL CIRCUITS.
 Do not perform any maintenance, make any adjustments, or replace any components inside the control panel with the high voltage power supply turned on. Under certain circumstances, dangerous potentials may exist even when the power supply is off. To avoid casualties, always turn the power supply safety switch to off, turn the charge or ground the circuit before performing any maintenance or adjustment procedure.

6. The unit is designed to operate at pressure not more than 100 psi.

7. Generalized instructions and procedures cannot anticipate all situations. For this reason, only qualified installers should perform the installations. A qualified installer is a person who has licensed training and a working knowledge of the applicable codes regulation, tools, equipment, and methods necessary for safe installation of an electric resistance water heater. If questions regarding installation arise, check your local plumbing and electrical inspectors for proper procedures and codes. If you cannot obtain the required information, contact the company.
MODEL MSE
DIMENSIONAL DATA

<table>
<thead>
<tr>
<th>Storage Capacity (Gallons)</th>
<th>Maximum KW Input</th>
<th>Dimensions (Inches)</th>
<th>Dimensions (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diameter</td>
<td>Height</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>14</td>
<td>17.5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>20</td>
<td>41.5</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>20</td>
<td>58.75</td>
</tr>
<tr>
<td>60</td>
<td>58</td>
<td>22.75</td>
<td>51</td>
</tr>
<tr>
<td>65</td>
<td>58</td>
<td>26</td>
<td>48</td>
</tr>
<tr>
<td>80</td>
<td>58</td>
<td>26</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>58</td>
<td>26</td>
<td>69.6</td>
</tr>
<tr>
<td>120</td>
<td>58</td>
<td>28</td>
<td>69.25</td>
</tr>
<tr>
<td>40</td>
<td>58</td>
<td>26</td>
<td>33</td>
</tr>
</tbody>
</table>

Front View

Side View

Combination Cold Water Inlet And Drain With Diffuser

Tank Cross Section

Steel Pressure Vessel

1/2" 6" 18"

Inlet and Drain Top View

Hi-Limit Cut Out

T&P Relief Valve

Electrical Control Panel

2" Insulation

Protective Jacket

Thermostat Sensor

Heating Elements (one, two or three)
SECTION I - GENERAL DESCRIPTION AND CONSTRUCTION

GENERAL DESCRIPTION
This book describes a packaged electric water heater, approved by ABS Americas (A Division of the American Bureau of Shipping) and the USCG (United States Coast Guard), which is a stationary, self contained unit and is designed and constructed specifically for marine applications on board a surface vessel. The complete assembly consists of the storage tank, immersion electric heating element(s), thermostat, safety relief valve, safety high temperature cut out, magnetic contactor(s), and any other required electrical operating control. Optional equipment may be supplied with your unit. Please consult the product drawing for details specific to your assembly. The unit is factory assembled, insulated, jacketed, wired, tested, and ready for electrical and plumbing service connections.

CONSTRUCTION

TANK

Standard Tank Construction:
The standard storage tank is constructed of steel and internally lined with specially formulated Hydrastone cement to a ½-inch minimum thickness. The tank is designed for a maximum allowable working pressure of 100 psi (150 psi TP).

Optional Tank Construction:
Optionally, the storage tank may be constructed of all welded solid copper-silicon alloy (ASTM B-96) or type 316L stainless steel for maximum tank longevity. For these options, no internal lining is required due to the non-ferrous materials used in the construction of the pressure vessel. The tank is designed for a maximum allowable working pressure of 100 psi (150 psi TP).

TANK CONNECTIONS
The heater is supplied with separate cold water and hot water connections. Water entering the cold water inlet is deflected by means of a baffle within the tank. The hot water outlet includes a built in heat trap to prevent hot water from radiating out from the heater. A ¾-inch FNPT connection is located on the side of the heater for mounting a combination safety temperature and pressure relief valve. An overflow line should be installed from the relief valve outlet to a floor drain. A ¾-inch GHT connection is supplied for draining. See drawing for locations and sizes.

HEATING ELEMENT
The water heater is supplied with an electric immersion heating element assembly(s), composed of incoloy sheathed elements that are brazed into a brass flange. Each assembly is fastened to a corresponding tank flange using a gasket and four (4) 3/8-16 x 1-inch long hex head steel bolts and nuts. See drawing for voltage and power ratings.

CONTROL THERMOSTAT
The water heater is supplied with either a surface mounted or immersion thermostatic switch that is installed and wired at the factory. See drawing for specific details. The surface mounted thermostat can be adjusted through a range of 110° - 170° F. The immersion thermostat can be adjusted through a range of 100° - 190° F. Both thermostats are adjustable with a flat tip screwdriver.
TEMPERATURE HIGH LIMIT SWITCH
As a safety device, either a surface mounted high temperature cut-off switch with manual reset, factory set at 190° F, or an immersion high temperature cut-off switch with manual reset, factory set at 180° F, is provided. In the event of an over-temperature condition, the thermostat will disengage the operating coils in the magnetic contactor(s). The high limit must be manually reset thereafter to restart the heater.

MAGNETIC CONTACTOR
The magnetic contactor(s) is a heavy-duty resistive load type rated for 100,000 cycles. The contactor supplies power to the heating element(s) and is sized based on the resistive load (non-inductive) rating of the circuit. The contactor supplies power only when the thermostatic switch is engaged, thereby pulling in the contacts until the desired temperature is reached. At this point, the contacts will drop out, which in turn disconnects power from the elements.

OUTER SHELL AND INSULATION
The tank is encapsulated in 2-inch thick polyurethane foam insulation. The insulation is protected by a high impact non-corroding colorized composite protective jacket.

OPTIONS
The following optional features may be included in your water heater. Reference included drawing specific to your heater for further details.

Low Water Cut-Off
Used as a safety device, the electronic low water cut-off is used to detect a low water situation and disengage the operating coils in the magnetic contactor(s). Once the condition is remedied, the low water cut-off switch is automatically reset.

Fused Low Voltage Transformer
A fused low voltage transformer may be supplied. This option is used to step down higher voltages to 120-volt for the control circuit.

Dial Temperature and Pressure Gauge
A combination temperature (70° - 250° F) and pressure (0 – 200 psi) gauge with 2½-inch dial may be supplied for in-line installation (shipped loose) or factory installed in the tank.
Vacuum Relief Valve
A vacuum relief valve may be provided with the unit to reduce the risk of back siphonage and back pressure of the system. The valve will be shipped loose for in-line installation. Instructions for installation are provided with the valve.

On/Off Switch
A built-in non-fused On/Off disconnect switch may be supplied with the control panel to disconnect power to the control panel control and power circuit wiring.

Individually Fused Elements
To prevent the possibility of damage to circuits and elements in case of electrical overloads, fuses may be supplied for each circuit. Two types of fuses may be used; a type NON for voltages less than 250-volt or type JJS for voltages less than 600-volt.

![Type JJS](image1)
![Type NON](image2)

Built-in Circuit Breaker
A built-in circuit breaker may be provided with or without shunt trip protection for protection from circuit overload.

Electro-Mechanical Timer
An electro-mechanical 7-day time clock with battery back-up may be supplied for specific timing operations. A set of instructions will be supplied with the timer.

SECTION II – INSTALLATION

WARNING / CAUTION

DO NOT TURN ON THE ELECTRIC POWER SUPPLY to this equipment until heater is completely filled with water and all air has been released. *If the heater is NOT filled with water when the power is turned on, the heating elements will burn out.*

For protection against excessive pressures and temperatures, code requires the installation of a temperature-and-pressure (T&P) relief valve certified by a nationally recognized laboratory that maintains periodic inspection of production of listed equipment of materials, as meeting the requirements for Relief Valves and Automatic Gas Shutoff for Hot Water Supply Systems. ANSI Z21.22-1971. THE CUSTOMER IS RESPONSIBLE TO PROTECT PROPERTY AND PERSONNEL FROM HARM WHEN THE VALVE FUNCTIONS.

All water heaters have a risk of leakage at some unpredictable time. IT IS THE CUSTOMER’S RESPONSIBILITY TO PROVIDE A CATCH PAN OR OTHER ADEQUATE MEANS, SO THAT THE RESULTANT FLOW OF WATER WILL NOT DAMAGE PROPERTY.

WATER HEATER PLACEMENT

1. Place the heater on a solid foundation in a clean, dry location nearest to the point of most frequent hot water use.
2. The water heater should be protected from freezing and waterlines insulated to reduce energy and water waste.
3. Leave a minimum of 18” clearance for element withdrawal, if necessary.
4. Do not install in an area where flammable liquids or combustible vapors are present.

SECURING OF HEATER
1. The heater is supported by four 2-inch x 2-inch x ¼-inch thick angle iron legs each with a 3-inch x 3-inch x ¼-inch thick steel base pad. Each leg is provided with one 9/16-inch diameter bolt hole for one ½-inch bolt which should be used to secure heater to the deck.
2. In addition to the leg supports, two 3-inch x 3-inch x ¼-inch thick brackets with removable 7/8-inch diameter mounting holes are attached to the upper portion of the heater. These brackets should be attached to bulkhead secured tie-rods thus insuring further support of the heater for shipboard installation.

Mounting Dimensions

<table>
<thead>
<tr>
<th>Tank Diameter “A”</th>
<th>Overall Diameter “B”</th>
<th>Bolt Circle “C”</th>
<th>Bulkhead Mounting Dimension “D”</th>
<th>Gallon Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>20</td>
<td>12</td>
<td>None</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>12</td>
<td>None</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>12</td>
<td>None</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>12</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>18 3/4</td>
<td>22 3/4</td>
<td>16</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>22</td>
<td>26</td>
<td>16</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>22</td>
<td>26</td>
<td>16</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>24</td>
<td>28</td>
<td>18</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>24</td>
<td>28</td>
<td>18</td>
<td>12</td>
<td>120</td>
</tr>
</tbody>
</table>
PIPING INSTALLATION

NOTE: The most effective means for preventing deterioration from accelerated corrosion due to galvanic and stray current is the installation of dielectric fittings/ unions. The installation of these fittings is the responsibility of the installing contractor.

1. Connect the cold water inlet and hot water outlet to the appropriate connections as shown; refer to the drawing for location and sizes.
2. Install in-line vacuum breaker, if supplied.
3. Install in-line pressure and temperature gauge, if supplied.
4. Install the combination temperature and pressure safety relief valve in the tapping provided. Note that this is required by law for safety considerations.

5. Install a relief valve overflow pipe to a nearby floor drain. CAUTION: No valve of any type should be installed between the relief valve and tank or in the drain line.

FILLING THE HEATER
1. Completely close the drain valve.
2. Open the highest hot water faucet to allow all air to escape from piping.
3. Open the valve to the cold water inlet and allow the heater and piping system to completely fill, as indicated by a steady flow of water from the open faucet.

ELECTRICAL INSTALLATION
1. Enter electric enclosure with properly sized feeder leads. Be sure to properly ground the water heater.
2. Install these power leads into the box lugs on the terminal block or magnetic contactor.
3. Torque screws per torque chart included in Section VI.
4. All other electrical connections are made at the factory; therefore, no other electrical connections are necessary.

FINAL CHECKS
1. Check all connections for tightness.
2. Ensure that all the above steps are completed
3. After the water is heated for the first time, monitor the water temperature as described in Section III, Quarterly Inspection.
SECTION III - SCHEDULED MAINTENANCE AND OPERATION

WARNING / CAUTION

Before performing any maintenance procedure, make certain power supply is OFF and cannot accidentally be turned on.

MAINTENANCE AND OPERATION

The water heater is automatic in its operation. It will maintain a full tank of water at the temperature setting of the thermostat. The water heater should not be turned on without first making sure that the tank is full of water and that all air has been released.

FREEZING

The tank should be fully drained in the event the electricity has been turned off and if there is danger of freezing.

QUARTERLY INSPECTION

1. Monitor thermostat
 a. Let water heater completely heat to a designated thermostat setting.
 b. After thermostat satisfies (that is, when the thermostat actually clicks off), draw water from heater.
 c. Compare water temperature of drawn water to the temperature setting of the thermostat when it satisfies. Normal variation between the two points is approximately ± 5°F.
 d. If these two readings do not coincide within acceptable tolerances and verification has been made of the accuracy of the temperature-reading gauge, replace the thermostat.

2. Lift test lever on relief valve and let water run through valve for a period of approximately 10 seconds. This will help flush away any sediment that might build up in water passageways.

3. Inspect element flange for leakage as follows:
 a. Shut off Power Supply.
 b. Remove element housing cover.
 c. Visually inspect heating element gasket for evidence of leaks.
 d. Rub finger around gasket that is between the heating element and tank flange for any evidence of moisture. If moisture is present or a water drip is observed, follow procedure outlined in Section V.

4. Check for loose electrical connections. Tighten as necessary.

ANNUAL INSPECTION

1. Flush tank as follows
 a. Shut off power supply.
 b. Close valve on hot water outlet piping.
 c. Open valve on drain piping.
 d. Cold water inlet line pressure will be strong enough to flush sediment from the bottom of the tank out through the drain. Let water run for 3-4 minutes.
 e. Close drain valve.
 f. Open hot water valve.
 g. Turn power supply ON.
SECTION IV – TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Probable Cause</th>
<th>Corrective Action / Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No hot water</td>
<td>Circuit breaker tripped at source.</td>
<td>Reset circuit breaker.</td>
</tr>
<tr>
<td>On/Off switch in ‘OFF’ position, if installed.</td>
<td>Turn switch to ‘ON’ position.</td>
<td></td>
</tr>
<tr>
<td>Circuit breaker at control cabinet tripped, if installed.</td>
<td>Reset circuit breaker.</td>
<td></td>
</tr>
<tr>
<td>Blown fuse in element fuse block, if installed.</td>
<td>Replace fuse.</td>
<td></td>
</tr>
<tr>
<td>Blown fuse in transformer, if installed.</td>
<td>Replace fuse.</td>
<td></td>
</tr>
<tr>
<td>High limit switch tripped.</td>
<td>Reset high limit switch.</td>
<td></td>
</tr>
<tr>
<td>Loose wires.</td>
<td>Tighten wires. Torque screws per torque chart included in Section VI.</td>
<td></td>
</tr>
<tr>
<td>Heating element inoperable.</td>
<td>Check heating element operation by clamping an Amprobe around each wire to the element. The ampere reading should agree with the nameplate ‘AMP’ figure.</td>
<td></td>
</tr>
<tr>
<td>Low line voltage.</td>
<td>Have source electrical system checked by an electrician.</td>
<td></td>
</tr>
<tr>
<td>Faulty thermostat.</td>
<td>Move thermostat dial through full range. A definite ‘click’ should be heard. If not, replace thermostat.</td>
<td></td>
</tr>
<tr>
<td>Faulty low water cut-off, if installed.</td>
<td>Check to see if tank is full of water. If not, fill tank. If problem continues and tank is full, check for continuity between the common and normally open contact of the relay board. If continuity is not observed, replace low water cut-off.</td>
<td></td>
</tr>
<tr>
<td>Magnetic contactor does not energize.</td>
<td>Replace complete magnetic contactor. Because of the design of this particular contactor, it is more desirable to replace complete control rather than rebuilding coil, contacts and springs, etc.</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Water temperature below settings at all times</td>
<td>Faulty thermostat</td>
<td>Check thermostat adjustment. Monitor thermostat as described in Section III, Quarterly Inspection. Replace if necessary.</td>
</tr>
<tr>
<td>Blown fuse in element fuse block, if installed.</td>
<td></td>
<td>Replace fuse.</td>
</tr>
<tr>
<td>Heating element not working on all phases</td>
<td></td>
<td>Check to see that heating element is working on all phases, by checking the resistance (ohms) value for each element and comparing with the chart included in Section VI.</td>
</tr>
<tr>
<td>Heater improperly sized</td>
<td></td>
<td>Verify heater is properly sized for the flow rate and temperature rise of your system. See formulas included in Section VI. Replace elements with proper size as necessary.</td>
</tr>
<tr>
<td>Relief valve discharges continuously</td>
<td>Excessive temperature or pressure in tank</td>
<td>Temperature and pressure relief valves are made to operate if the water temperature exceeds 210°F or water pressure exceeds the pressure rating of the safety relief valve. If trouble is excessive temperature, then thermostat is not shutting off at the right setting and thermostat must be replaced.</td>
</tr>
</tbody>
</table>

SECTION V - SERVICING & REPLACEMENT OF PARTS

WARNING / CAUTION

Before servicing or replacing any part make sure to turn the power supply switch to the OFF position.

SURFACE TEMPERATURE HIGH LIMIT CUT-OFF

1. Disconnect power from unit.
2. Remove access cover.
3. Disconnect the four (4) 14 gauge wires.

![Control Wires Diagram]
4. Remove the two (2) mounting screws.

5. Replace control and install new high limit switch by performing above steps in reverse order.
 See wiring diagram included with drawing for assistance.

IMMERSION TEMPERATURE HIGH LIMIT CUT-OFF

1. Disconnect power from unit.
2. Remove access cover.
3. Remove high limit cover screw and cover.
4. Disconnect the two (2) 14 gauge wires.
5. Remove capillary tube and bulb from thermowell
6. Remove two (2) mounting screws.
7. Remove control and install new high limit switch by performing above steps in reverse order. (Note: Be sure to place capillary tube into slot in base prior to installing cover.)

HEATING ELEMENT

1. Disconnect power from unit.
2. Shut off incoming water supply.
3. Attach hose to drain connection.
4. Lift manual release lever on relief valve to let air into system or break union on outgoing water line.
5. Drain water from tank.
6. Disconnect the wires from the heating element terminals.
7. Remove the 3/8-16 nuts.

8. Withdraw element assembly and remove gasket.

9. Install new gasket and insert new heating element.
10. Rewire element according to the voltage and phase rating of the unit as shown below.
11. Fill tank and check around gasket for any leaks.
JUMPER CONFIGURATION

1 PHASE
208 OR 240 VOLT

3 PHASE DELTA
208 OR 240 VOLT

3 PHASE WYE
380 TO 575 VOLT

1 PHASE
480 VOLT
SURFACE MOUNTED THERMOSTAT
1. Disconnect power from unit.
2. Remove access cover and locate thermostat.
3. Disconnect the two (2) 14 gauge wires.

4. Remove two (2) mounting screws.

5. Replace thermostat using the reverse procedure.

IMMERSION THERMOSTAT
1. Disconnect power from unit.
2. Remove access cover and locate thermostat.
3. Remove high limit cover screw and cover.
4. Disconnect the two (2) 14 gauge wires.

5. Remove capillary tube and bulb from thermowell.

6. Remove two (2) mounting screws.

7. Replace thermostat using reverse procedure. (Note: Be sure to place capillary tube into slot in base prior to installing cover.)

MAGNETIC CONTACTOR

1. Disconnect power from unit.
2. Disconnect line and load wires to contactor.
3. Disconnect two (2) 14 gauge control circuit wires.
4. Loosen two (2) holding screws and remove contactor.

Mounting Screws
(Bottom screw not shown)

5. Replace with new contactor using reverse procedure.

RELIEF VALVE

1. Disconnect power from unit.
2. Shut off incoming water supply.
3. Lift test lever on relief valve to relieve pressure in tank.
4. Disconnect overflow piping.
5. Unscrew relief valve, remove assembly and replace with new one.
6. Connect overflow piping.
7. Turn on incoming water supply and check for leaks.
8. Turn safety switch to ON position.
SECTION VI – MISCELLANEOUS CHARTS AND FORMULAS

ELEMENT CHART

<table>
<thead>
<tr>
<th>Element Part #</th>
<th>Immersion Length</th>
<th>Resistance (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hairpin</td>
</tr>
<tr>
<td>2-38683N</td>
<td>13"</td>
<td>57.6</td>
</tr>
<tr>
<td>3-38683N</td>
<td>13"</td>
<td>43.2</td>
</tr>
<tr>
<td>4-38683N</td>
<td>13"</td>
<td>34.4</td>
</tr>
<tr>
<td>5-38683N</td>
<td>13"</td>
<td>27.9</td>
</tr>
<tr>
<td>6-38683N</td>
<td>13"</td>
<td>21.6</td>
</tr>
<tr>
<td>7-38683N</td>
<td>13"</td>
<td>17.1</td>
</tr>
<tr>
<td>8-38683N</td>
<td>13"</td>
<td>14.4</td>
</tr>
<tr>
<td>9-38683N</td>
<td>15"</td>
<td>12.1</td>
</tr>
<tr>
<td>10-38683N</td>
<td>15"</td>
<td>9.1</td>
</tr>
<tr>
<td>11-38683N</td>
<td>15"</td>
<td>7.5</td>
</tr>
</tbody>
</table>

FORMULAS

RECOVERY

\[
\text{GPH} \times \frac{\text{°F } \Delta T}{0.00244} = \text{KW}
\]

\[
\text{KW} \times 410 \div \text{GPH} = \frac{\text{°F } \Delta T}{\text{GPH}}
\]

\[
\text{KW} \times 410 \div \frac{\text{°F } \Delta T}{\text{GPH}} = \text{GPH}
\]

Note: 1 KW will heat 4.1 GPH at a 100°F ΔT

ELECTRICAL

\[
\text{KW} \times 1000 \div 1.73 = \text{Amps 3 Φ}
\]

\[
\text{Amps 1 Φ} = \text{KW} \times 1000 \div \text{Volts}
\]

METRIC CONVERSION

<table>
<thead>
<tr>
<th>Metric</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liters</td>
<td>× 0.2641</td>
</tr>
<tr>
<td>Gallons</td>
<td>× 3.79</td>
</tr>
<tr>
<td>Gallons</td>
<td>× 0.003785</td>
</tr>
<tr>
<td>m³</td>
<td>× 264.2</td>
</tr>
<tr>
<td>1°C ΔT</td>
<td>= 1.8°F ΔT</td>
</tr>
<tr>
<td>°C</td>
<td>= (°F - 32) × 0.556</td>
</tr>
<tr>
<td>psi</td>
<td>× 0.06896</td>
</tr>
<tr>
<td>Bar</td>
<td>× 14.5</td>
</tr>
<tr>
<td>psi</td>
<td>× 6.86</td>
</tr>
<tr>
<td>kPa</td>
<td>× 0.1456</td>
</tr>
<tr>
<td>Lbs</td>
<td>× 0.4536</td>
</tr>
<tr>
<td>Kg</td>
<td>× 2.2</td>
</tr>
<tr>
<td>Watts/Sq.Cm.</td>
<td>× 6.4 = Watts/Sq.In.</td>
</tr>
<tr>
<td>Watts/Sq.In.</td>
<td>× 0.155 = Watts/Sq.Cm.</td>
</tr>
<tr>
<td>BOLT SIZE</td>
<td>18-8 S/S IN.-LBS.</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>4-40</td>
<td>5.2</td>
</tr>
<tr>
<td>4-48</td>
<td>6.6</td>
</tr>
<tr>
<td>5-40</td>
<td>7.7</td>
</tr>
<tr>
<td>5-44</td>
<td>9.4</td>
</tr>
<tr>
<td>6-32</td>
<td>9.6</td>
</tr>
<tr>
<td>6-40</td>
<td>12.1</td>
</tr>
<tr>
<td>8-32</td>
<td>19.8</td>
</tr>
<tr>
<td>8-36</td>
<td>22.0</td>
</tr>
<tr>
<td>10-24</td>
<td>22.8</td>
</tr>
<tr>
<td>10-32</td>
<td>31.7</td>
</tr>
<tr>
<td>1/4-20</td>
<td>75.2</td>
</tr>
<tr>
<td>1/4-28</td>
<td>94.0</td>
</tr>
<tr>
<td>5/16-18</td>
<td>132</td>
</tr>
<tr>
<td>5/16-24</td>
<td>142</td>
</tr>
<tr>
<td>3/8-16</td>
<td>236</td>
</tr>
<tr>
<td>3/8-24</td>
<td>259</td>
</tr>
<tr>
<td>7/16-14</td>
<td>376</td>
</tr>
<tr>
<td>7/16-20</td>
<td>400</td>
</tr>
<tr>
<td>1/2-13</td>
<td>517</td>
</tr>
<tr>
<td>1/2-20</td>
<td>541</td>
</tr>
<tr>
<td>9/16-12</td>
<td>682</td>
</tr>
<tr>
<td>9/16-18</td>
<td>752</td>
</tr>
<tr>
<td>5/8-11</td>
<td>1110</td>
</tr>
<tr>
<td>5/8-18</td>
<td>1244</td>
</tr>
<tr>
<td>3/4-10</td>
<td>1530</td>
</tr>
<tr>
<td>3/4-16</td>
<td>1490</td>
</tr>
<tr>
<td>7/8-9</td>
<td>2328</td>
</tr>
<tr>
<td>7/8-14</td>
<td>2318</td>
</tr>
<tr>
<td>1-8</td>
<td>3440</td>
</tr>
<tr>
<td>1-14</td>
<td>3110</td>
</tr>
</tbody>
</table>
Confirmation of Product Type Approval 25/MAR/2009

Please refer to the "Service Restrictions" shown below to determine if Unit Certification is required for this product. This is to certify that, pursuant to the Rules of the American Bureau of Shipping (ABS), the manufacturer of the below-listed product held a valid Manufacturing Assessment (MA) with expiration date of 15/MAR/2014. The continued validity of the Manufacturing Assessment is dependent on completion of all statutory audits as required by the ABS Rules.

And, a Product Design Assessment (PDA) valid until 22/MAR/2014 subject to continued compliance with the Rules or standards used in the evaluation of the product.

The above entitles the product to be called Product Type Approved.

The Product Design Assessment is valid for products intended for use on ABS classed vessels, MODUs or facilities which are in existence or under contract for construction on the date of the ABS Rules used to evaluate the Product.

ABS makes no representations regarding Type Approval of the Product for use on vessels, MODUs or facilities built after the date of the ABS Rules used for this evaluation.

Due to wide variety of specifications used in the products ABS has evaluated for Type Approval, it is part of our contract that, whether the standard is an ABS Rule or a non-ABS rule, the Client has full responsibility for continued compliance with the standard.

HUBBELL THE ELECTRIC HEATER CO.
Model Name(s): MSE Series, Shipboard Electric Water Heater

Presented to:
HUBBELL THE ELECTRIC HEATER CO.
P.O. BOX 288
STRATFORD
CT 06615
United States

Intended Service: Designed to provide Potable Hot Water for Onboard Commercial Marine requirements (Non-Pleasure Craft). Units are designed for Weather deck locations.

Description: Commercial Electric Type Water Heaters, Vertical or Horizontal, Jacketed Insulated including all necessary and required operating controls.

Ratings:
- Maximum Working Pressure: 160 psig
- Maximum Design Temperature: 100 °C (212 °F)
- Capacity: 8 to 120 Gallons (U.S.), Thermostat Range: 110 - 170 °F (Max. Limit 190 °F), Relief Valve Type: "T"-2" 2.0 °F, 160 psi. For weather deck locations, NEMA 4 or 4X enclosures are to be employed.

Service Restrictions: Unit Certification is not required for this product. If the manufacturer or purchaser request an ABS Certificate for compliance with a specification or standard, the specification or standard, including inspection standards and tolerances, must be clearly defined. a) Material certifications and tolerances are to be at the Surveyor's satisfaction, in accordance with 4-4-1/71 and 7.5 of the Rules respectively. b) Scantling arrangements on board ship are to be set to the attending Surveyor's satisfaction, as per 4-4-1/10.1 of the Rules. For vertically mounted units, anti-sagging stays should be provided to minimize the loads applied to the lower head to shell weld due to the motions of the vessel.

Comments:
- (a) Welding to be performed in accordance with approved procedures.
- Procedure qualification records, welder qualifications and production welds are to be maintained for records.
- (b) Hydrostatic testing is to be performed at the plant of

Term of Validity: This Design Assessment Certificate number 04-HS90-442C1-PDA, dated 26/06/2008 will expire on 22/03/2014 or at an earlier date should there be alterations to the products design or changes to the referenced ABS Rules and other specifications which affect the product. Product use on or after 1 January 2010, will be subject to compliance with the ABS Rules or specifications in effect when the vessel, MODU or facility is contracted. The products acceptability on board ABS-classed vessels or facilities is defined in the service restrictions of this certificate.

ABS Rules: 2009 Steel Vessels Rules 1-1-47.7, 4-4-1/5, 11.9, 17.1

National Standards:UL STD - H93, UL KSBZ. E70323, 40 CFR Part 103.01

International Standards: EIMED:
Others:

ABS Programs

ABS has used due diligence in the preparation of this certificate and represents to the information on this product is the ABS records at the date and time the certificate was printed. Type Approval does not convey assurance of fitness for purpose. Approval does not necessarily convey the vessel, MODU or facility is contracted. The products acceptability on board ABS-classed vessels or facilities is defined in the service restrictions of this certificate if all other, be addressed to ABS.
NOTES